基于TEI@I方法论的中国季播电视综艺节目收视率预测

发布时间:2025-09-18 07:42

电视节目包括新闻、电视剧、综艺节目等 #生活常识# #电视#

参考文献

[1] 2014年Q4全球广告市场预测报告[EB/OL]. [2014-12-9]. http://www.digitaling.com/articles/13048.html. Global advertising market forecast report in 2014Q4[EB/OL]. [2014-12-9]. http://www.digitaling.com/articles/13048.html.
[2] Gaebler. How much do television ads cost[EB/OL]. [2015-1-22]. http://www.gaebler.com/Television-Advertising-Costs.htm.
[3] 2014年中国媒体全景[R]. 实力传播, 2014.China media panorama in 2014[R]. ZenithOptimedia, 2014.
[4] Patelis A, Metaxiotis K, Nikolopoulos K, et al. For TV: Decision support system for forecasting television viewership[J]. Journal of Computer Information Systems, 2003, 92(12): 100-107.
[5] 姚芳,李越,肖春来. 基于时间序列模型的全国30家电台收视率分析[J]. 数学的实践与认识, 2011, 41(13): 34-39.Yao F, Li Y, Xiao C L, Analysis of China's 30 TV ratings based on time series model[J]. Mathematics in Practice and Theory, 2011, 41(13): 34-39.
[6] 邬丽云,曲洲青. 基于BP神经网络的收视率预测[J]. 中国传媒大学学报, 2011, 18(3): 59-62.Wu L Y, Qu Z Q. The prediction of audience rating research based on BP networks[J]. Journal of Communication University of China, 2011, 18(3): 59-62.
[7] 陈青,薛惠锋. 改进P-SVM收视率预测方法及其应用研究[J].西安工业大学学报, 2011, 31(6): 536-542.Chen Q, Xue H F. Modified potential support vector machine and its application in predicting audience rating[J]. Journal of Xi'an Technological University, 2011, 31(6): 536-542.
[8] Danaher P J, Dagger T S, Smith M S. Forecasting television ratings[J]. International Journal of Forecasting, 2011, 7(4): 1215-1240.
[9] 陆海鹰. 基于线性回归的电视节目收视率预测模型[J]. 当代电视, 2012(11): 55-57.Lu H Y. Forecasting television ratings based on linear regression model[J]. Contemporary TV, 2012(11): 55-57.
[10] Danaher P J, Dagger T S. Using a nested logit model to forecast television ratings[J]. International Journal of Forecasting, 2012, 28(3): 607-622.
[11] 梁招娣,刘小龙. 基于RBF 神经网络的电视收视率预测[J]. 河南科学, 2013, 31(9): 1429-1431.Liang Z T, Liu X L. The audience rating prediction based on RBF neural networks[J]. Henan Science, 2013, 31(9): 1429-1431.
[12] 涂娟娟,刘同明. 基于决策树的电视节目收视率预测模型[J]. 微计算信息, 2007, 23(93): 251-252.Tu J J, Liu T M. A predicting model of TV audience rating based on the decision tree[J]. The Micro Calculation Information, 2007, 23(93): 251-252.
[13] 张晶,白冰,苏勇. 基于贝叶斯网络的电视节目收视率预测研究[J]. 科学技术与工程, 2007, 7(19): 5100-5102.Zhang J, Bai B, Su Y. Forecasting TV ratings based on Bayesian network[J]. Science Technology and Engineering, 2007, 7(19): 5100-5102.
[14] 陈青,薛惠锋,闫莉. 基于半模糊核聚类算法的收视率预测研究[J]. 计算机工程与应用, 2012, 48(6): 151-154.Chen Q, Xue H F, Yan L. Forecasting TV ratings based on Semi fuzzy kernel clustering algorithm[J]. Computer Engineering and Application, 2012, 48(6): 151-154.
[15] 2014年三季度网络广告及搜索引擎市场核心数据发布[EB/OL]. [2014-11-06]. http://report.iresearch.cn/html/2014-1106/241146.shtml. The important data of network advertising and search engine market in 2014Q3[EB/OL]. [2014-11-06]. http://rep-ort.iresearch.cn/html/20141106/241146.shtml.
[16] 黄先开,张丽峰,丁于思. 百度指数与旅游景区游客量的关系及预测研究[J]. 旅游学刊, 2013, 13(11): 201-204.Huang X K, Zhang L F, Ding Y S. Research on the relationship between Baidu index and tourist quantity and prediction of tourist quantity[J]. Journal of Travel, 2013, 13(11): 201-204.
[17] 李秀婷, 刘凡, 董纪昌, 等. 基于互联网搜索数据的中国流感监测[J]. 系统工程理论与实践, 2013, 33(12): 3028-3034.Li X T, Liu F, Dong J C, et al. Detecting China influenza using search engine data[J]. Systems Engineering-Theory & Practice, 2013, 33(12): 3028-3034.
[18] 王炼, 贾建民. 基于网络搜索的票房预测模型——来自中国电影市场的证据[J]. 系统工程理论与实践, 2014, 34(12): 3079-3090.Wang L, Jia J M. Forecasting box office performance based on online search: Evidence from Chinese movie industry[J]. Systems Engineering-Theory & Practice, 2014, 34(12): 3079-3090.
[19] 缪杰. 基于百度指数的投资者关注度对于股票市场表现的影响[D]. 厦门:厦门大学, 2014.Miu J. Research on how investor attention impact stock market based on baidu index[D]. Xiamen: Xiamen University, 2014.
[20] Gensch D, Shaman P. Models of competitive television ratings[J]. Journal of Marketing Research, 1980, 17(3): 307-315.
[21] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.
[22] Xie G, Wang S, Zhao Y, et al. Hybrid approaches based on LSSVR model for container throughput forecasting: A comparative study[J]. Applied Soft Computing, 2013, 13(5): 2232-2241.
[23] Wang S Y. TEI@I: A new methodology for studying complex systems[R]. Workshop on Complexity Science, Tsukuba, April 22-23, 2004.
[24] Wang S Y, Yu L A, Lai K K. Crude oil price forecasting with TEI@I methodology[J]. Journal of Systems Science and Complexity, 2005, 18(2): 145-166.
[25] 闫妍, 许伟, 部慧, 等. 基于TEI@I方法论的房价预测方法[J]. 系统工程理论与实践, 2007, 27(7): 1-9.Yan Y, Xu W, Bu H, et al. Housing price forecasting method based on TEI@I methodology[J]. Systems Engineering-Theory & Practice, 2007, 27(7): 1-9.
[26] 张嘉为, 索丽娜, 齐晓楠, 等. 基于TEI@I方法论的通货膨胀问题与预测[J]. 系统工程理论与实践, 2010, 30(12): 2157-2164.Zhang J W, Suo L N, Qi X N, et al. Inflation forecasting method based on TEI@I methodology[J]. Systems Engineering-Theory & Practice, 2010, 30(12): 2157-2164.
[27] Nikolopoulos K, Goodwin P, Patelis A, et al. Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches[J]. European Journal of Operational Research, 2007, 180(1): 354-368.
[28] Moody J, Darken C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 2(1): 281-294.
[29] Vapnik V. The nature of statistical learning theory[M]. Springer-Verlag New York, 1995: 170-189.
[30] Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, regression estimation, and signal processing[J]. Advances in Neural Information Processing Systems, 1996, 8(3): 346-371.
[31] 于滨, 杨忠振, 林剑艺. 应用支持向量机预测公交车运行时间[J]. 系统工程理论与实践, 2007, 27(4): 160-164.Yu B, Yang Z Z, Lin J Y. Bus arrival time prediction using support vector machines[J]. Systems Engineering-Theory & Practice, 2007, 27(4): 160-164.
[32] 孙涵, 杨普容, 成金华. 基于Matlab支持向量回归机的能源需求预测模型[J]. 系统工程理论与实践, 2011, 31(10): 2001-2007.Sun H, Yang P R, Cheng J H. Forecasting model of energy demand based on Matlab support vector regression[J]. Systems Engineering-Theory & practice, 2011, 31(10): 2001-2007.
[33] Smola A, Murata N, Scolkopf B, et al. Asymptotically optimal choice of ε-loss for support vector machines[C]//Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing, Berlin Springer, 1998: 105-110.
[34] Diebold F X, Mariano R S. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 2002, 20(1): 134-144.
[35] Babyak M A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models[J]. Psychosomatic Medicine, 2004, 66(3): 411-421.
[36] Kennedy P E. What are the rules? The ten commandments of applied econometrics[J]. Journal of Economic Surveys, 2003, 16(4): 569-589.

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

国家自然科学基金面上项目(71373262);国家自然科学基金重大项目(71390330,71390331);中国科学院大数据挖掘与知识管理重点实验室开放课题

{{custom_fund}}

网址:基于TEI@I方法论的中国季播电视综艺节目收视率预测 https://klqsh.com/news/view/251861

相关内容

2014年我国综艺节目收视率排名
中国电视综艺节目研究述评
综艺节目大搜罗 超高收视率综艺节目推荐
(露营综艺节目收视率排行榜前十名)十大露营综艺节目排名 最火的露营综艺 关于露营的综艺盘点
2019年综艺节目和电视剧收视市场分析
收视率最高的综艺(收视率怎么算)
电视综艺节目的改版
全球热播电视综艺节目解析
中国综艺节目行业市场发展分析及行业前景预测研究报告(2025
2009各大卫视电视剧收视、电视剧30强、综艺节目排行

随便看看